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J. Phys. A: Math. Gen. 19 (1986) 2689-2706. Printed in Great Britain 

Complementarity relation between the U(p, q )  and U(n) Lie 
groups and some applications to atomic physics 

C Quesnet 
Physique Thtorique et Mathtmatique CP 229, Universitt Libre de Bruxelles, Bd du 
Triomphe, B 1050 Brussels, Belgium 

Received 10 December 1985 

Abstract. The complementarity relation between the unitary groups U(d) and U(n) within 
the symmetrical irreducible representations of the larger unitary group U(dn) is extended 
to non-compact groups. It is proved that the pseudo-unitary group U(p, q )  is complemen- 
tary with respect to U( n )  within some positive discrete series irreducible representations 
ofthe larger pseudo-unitary group U( pn, qn) .  The latter arise when reducing the metaplectic 
irreducible representations ((1/2)d”) and (( 1/2)d”-’3/2) of the real symplectic group 
Sp(2dn, R), where d = p +  q, and they are characterised by a single label, the eigenvalue 
of the first order Casimir operator. Some applications of the U( p ,  q)-U( n )  complementarity 
to atomic physics are outlined. For such purposes, the isomorphism between the Lie 
algebras of SU(2,2) and S0(4,2) is used extensively. The mathematical framework underly- 
ing the Kibler-Ntgadi approach of the hydrogen atom dynamical group is extended to 
the independent-electron dynamical group of intrashell many-electron states, as well as to 
the correlated electron dynamical group of intrashell doubly excited states. 

1. Introduction 

In various physical applications of group theory, there occur direct product subgroups 
G I  x G2 of a larger group H, satisfying a special type of relation termed either com- 
plementarity (Moshinsky and Quesne 1970) or duality (Howe 1979, Gelbart 1979). 
Following Moshinsky and Quesne (1970), the subgroups G I  and G, are referred to as 
complementary within a definite irreducible representation (irrep) p of H if the irreps 
A,xA2 of G , x G 2  contained in p are multiplicity free, and there is a one-to-one 
correspondence between the labels of such associated irreps A and A 2 .  

A well known example of complementary Lie groups is provided by the pair of 
unitary groups U( d )  and U( n) once one considers either symmetrical or antisymmetrical 
irreps of the larger unitary group U(dn), characterised by one-row { p }  or one-column 
{ 1’) Young diagrams respectively (Baird and Biedenharn 1963, Moshinsky 1963,1968). 
The symmetrical irreps { p }  (respectively the antisymmetrical irreps (1’)) of U(dn) 
indeed decompose under U(d) x U(n) into a direct sum of irreps { h }  x { h } ,  where 
{ h }  = { h,  , . . . , h,} runs over all the partitions of p into m = min( d, n) integers (respec- 
tively a direct sum of irreps { h }  x { h”}, where { h }  = { h ,  , . . . , h d }  runs over all the 
partitions of p into d integers not exceeding n and { h ” }  is the partition conjugate to 
{ h } ) .  Other examples of complementary Lie groups can be found in recent publications 
(Quesne 1985a, b). 

t Maitre de recherches FNRS. 
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2690 C Quesne 

The aim of the present paper is to extend to non-compact groups the above- 
mentioned complementarity between U( d )  and U( n) within the symmetrical irreps 
{ p }  of U( dn). Setting d = p + q, we shall demonstrate that the pseudo-unitary group 
U( p ,  q )  is complementary with respect to U( n) within some positive discrete series 
irreps of U(pn, qn). As the symmetrical irreps of U(dn), such irreps of U(pn, qn)  are 
characterised by a single label p .  

Two special cases of the U( p, q)-U( n )  complementarity have already been reported 
in the physical literature: the case where p = q = n = 3 by Flores (1967), who did not, 
however, completely identify the U(3,3) group, and the one where p = q, n = 1 by 
Couvreur et a1 (1983). As far as the general case is considered, this has been discussed 
in the mathematical literature (Gross and Kunze 1977, Kashiwara and Vergne 1978, 
Gelbart 1979), but we feel the need to update this discussion to the field of physics 
and to demonstrate its usefulness in specific applications as reviewed at the end of the 
present paper?. Other applications to SU( n )  representation theory will be dealt with 
in forthcoming publications. 

In § 2, by starting with a boson realisation of the symplectic group Sp(2dn, R ) ,  
where d = p + q, we introduce a U( pn, q n )  subgroup of the latter and show that the 
irreps of such a subgroup are positive discrete series specified by a single integer p. 
In § 3, we define U( p, q )  and U( n) subgroups of U( pn, q n ) ,  characterise their irreps 
contained in a given irrep of U(pn, q n )  and state their complementarity relation. In 
§ §  4 and 5 ,  we prove the latter in the cases where n L p + q and n < p  + q respectively. 
Finally, in § 6, we outline some applications to atomic physics. 

2. The U(pn, qn) subgroup of Sp(2dn, I?), where d = p + q, 
and its irreducible representations 

As is well known (Moshinsky and Quesne 1971), the Sp(2dn, R )  generators can be 
realised in terms of dn boson creation operators vis, i = 1 , .  . . , d, s = 1,. . . , n and the 
corresponding annihilation operators tis as follows: 

Dt IS,Jf . = D t .  ] f , l S  = 7.77. IS J f  

( i s )  c ( j t  ) D. . = D . .  =t. t .  

Eis,jr = t ( ~ i s t j t  + t j r ~ i s )  = v i s t j r  +36ijSsr 

[ E i s , j t ,  E i . s . , j y ]  = Sji&'lEis,j'r' - S i j . S s f . E i , s , , j f  

(is) s ( j t )  

(2.1) l S , J f  Jf,W I S  J f  

where i, j = 1, . . . , d and s, t = 1, . . . , n. Their commutation relations are given by 

D ; y j y ]  = S j i . S f s . D ; s , j ' , '  + Sjj.S,,.D t is,i's' 

[ D i s , j r ,  rra:yjyl = S l i & E j , f , , j t  + S i j . S s r . E i . , . , j r  + Sji&Ej.f ' ,Is  + 6*i'6fr .Ei .s . , i s .  

~ i s , j r  = (DZ,jr)+ 

In addition, they satisfy the following Hermiticity properties: 

(2.3) [E. W,]f . =(E.  J f , l S  . )+. 

t After completion of the present work, King and Wyboume (1985) published a paper, wherein the chain 
U(pn, qn)>U(p, q ) x U ( n )  is used to derive branching rules from U(p,q) to U ( p ) x U ( q )  by the Schur 
function technique. 



Complementarity between U (  p,  q )  and U (  n) 2691 

In the realisation (2.1), the Sp(2dn, R )  group has only two (metaplectic) irreps. They 
are positive discrete series irreps, characterised by their lowest weight (( 1/2)d") or 
((1/2)d"-13/2), and their carrier space is the set of boson states with an even or odd 
boson number respectively. 

Let us set d = p + q, where without loss of generality we may assume p 3 q, and let 
us define the operators Pis,jr, i, j = 1, . . . , d, s, t = 1, . . . , n by the following relations: 

(2.4a) 

= [ E . , .  J L  IS  if i , j = p + l , .  . . , d (2.4b) 

=D:s,jr if i = l ,  ..., p a n d j = p + l ,  . . . ,  d ( 2 . 4 ~ )  

= D . ,  if i = p + l ,  . . . ,  d and j = 1 ,  ..., p .  (2.4d) 

From the commutation relations and Hermiticity properties of the Sp(2dn, R )  gen- 
erators, those of the operators Pis,jr are, respectively, obtained as 

p. I S , J l  . = [ E .  IS,Jl . if i , j =  1,. . . , p  

[ p i ,  j r ,  pi's,, j r r , l =  gjt,i,s,pis, j ' r '  - gj,tf,ispiss,, jr (2.5) 

and 
p. lS ,J t  . =(p. J f , l S  . ) +  

where the metric tensor gis,jr is defined by 

and 

& i  = 1 if i = 1, . . . , p 

=-1 if i = p + l ,  . . . ,  d. 

The operators Pis,jr are therefore the generators of a U( pn,  qn)  subgroup of Sp(2dn, R ) .  
The maximal compact subgroup of U(pn, q n )  is the direct product group U(pn) x 
U(qn), whose factors are generated by the operators (2.4a) and (2.4b) respectively. 

From equation (2.5), the weight generators of U(pn, q n )  are the operators Pis,is = 
E . .  IS,IS 7 i = l  , . . . , d, s = 1 , .  . . , n. Let us enumerate the values of the double index is in 
lexical order: 11, . . . , 1 n, 21, . . . ,2n, . . . , d 1, . . . , dn. The lowering generators are those 
operators Pis,jr for which either (is) > (j t) ,  i, j = 1, . . . , p,  s, t = 1, . . . , n or (is) < (it), 
i , j = p + l ,  . . . ,  d , s , t = l ,  . . . ,  n o r i = p + l ,  . . . ,  d , j = l ,  . . . ,  p , s , t = l ,  . . . ,  n. 

The U(pn, q n )  irreps to be dealt with in the present problem are positive discrete 
series irreps characterised by their lowest weight {f,,, + 4, . . . , fl l  + f ;  f& + i, . . . , f;l +;I, 
where { f i l l .  . . , fpn}  and {f i l , .  . . ,fin} are two partitions. The lowest weight state (LWS) 

of such irreps satisfies the following system of equations: 

pis,isILws) = (fp+l-i ,n+1-s+i)ILWS) 

( f A  + I - i, n + 1 - s + i) 1 ~ ~ s )  

i = l , .  . . , p  

i = p + l , .  . .  , d 

Pis, jr I LWS) = 0 ( is)> ( $ 1  i, j = 1, . . . , p (2.9) 
= O  (is) < ( j t )  i , j = p + l , . .  , , d 

= O  i = p + l , . .  . , d j = l , .  . . , p  

where s, t = 1 , .  . . , n. It is the lowest weight state of an irrep { f l l + & .  . . , fpn+f}  x 
{f;l+f, .  . . , f in+$} of the maximal compact subgroup U(pn) x U(qn). 
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By extending to arbitrary values of p, q and n the work of Couvreur et a1 (1983) 
for p = q and n = 1, it is easy to show that for the realisation (2.4) of the U(pn, q n )  
generators, equation (2.9) only has a solution in either one of the three following cases: 
(i) fil = p > 0, fI2=. . . =fpn =f;, =, . . =fbn = O ;  (ii) f;, = - p  > 0, f,, = . . . =fpn = f i 2  = 
. . .  =fqn = 0 and (iii) f,, = . . . =fpn =f:, = . . . =fbn = p = 0. This solution is 

in case (i) I L W  = ( 7 1 p n ) P 1 0 )  

= ( 7 d n ) - P I O )  in case (ii) (2.10) 

= lo> in case (iii) 

where 10) is the boson vacuum state. The U(pn, qn)  irreps contained in either irrep 
((1/2)d") or ((1/2)d"-13/2) of Sp(2dn, R)  can be denoted by the shorthand notation 
[ p ] ,  p E 2, defined as follows: 

[PI = {(1/2)pn-1, p + t ;  (1/2)4"} if p > O  

= {(1/2)P"; (1/2)4"-', - p  +$} 

= {( 1/2)P"; (1/2)4"} 

if p < 0 

if p = 0. 

The branching rules can be written as 

((1/2)d")J. +cm @[PI 
p=-w 
p even 

and 

((1/2)d"-'3/?> .1 ? Ob] .  
p=-m 
p odd 

(2.11) 

(2.12) 

The label p specifying the U(pn, qn)  irreps in equations (2.11) and (2.12) has a 
very simple meaning. Let us indeed consider the U( pn, qn) first order Casimir operator 

(2.13) 

By applying it to the lowest weight state (2.10), we obtain the equation 

GIILWS) = [ P  +S(P - q ) n l l L w s )  (2.14) 

valid in all three cases p > 0, p < 0 and p = 0. Apart from an irrelevant constant, p is 
therefore the eigenvalue of the first order Casimir operator 6, of U(pn, qn). Let us 
note that p has a similar meaning for the symmetrical irreps { p }  of the compact group 
U(dn). The irreps (2.11) of U(pn, qn) may therefore be considered as the infinite- 
dimensional counterpart for pseudo-unitary groups of the U( dn) finite-dimensional 
irreps { p } .  

3. The U(p, q ) x  U(n) subgroup of U(pn, qn) and its irreducible representations 

By contracting the U(pn, qn)  generators with respect to index i or s, we obtain the 
operators 

Pij = C is, j s  i, j = 1, . . . , d 
S 

(3.1) 
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and 

g s r  = C & i P i s , i r  s, t = l ,  . . . ,  n. 
I 

(3.2) 

From equations (2.5) and (2.6), it follows that the operators P, satisfy the following 
commutation relations and Hermiticity properties: 

[ P . .  V 3 pi7.1=g..,p..,-g.,.p.,.  Jg IJ J 1  ' J  (3.3) 
p..  11 = ( P . . ) +  JI (3.4) 

g . .  y = &.a.. I v *  (3.5) 

where 

Hence they generate a U(p, q )  subgroup of U(pn, qn). The corresponding relations 
for the operators 9 S r  are 

[ g s r ,  pscr'l = a r s ' g s r f -  S r P ' s ' r  (3.6) 

(3.7) 
showing that such operators generate a U(n) subgroup of U(pn, qn). Since 

[P , ,  psrl= 0 (3.8) 

the U( pn, qn) group actually contains the direct product subgroup U( p, q )  x U(n). 
We therefore obtain the following group chain 

SpWn,  R )  = WPn, q n )  = U(P, 4) x U(n) d =p+q .  (3.9) 
At this point, it is worth noting that U(p, q )  also belongs to the group chain 

SpWn,  R )  = SP(24 R )  = WP, 4 )  
where Sp(2d, R )  is generated by the operators 

d = p + q  (3.10) 

(3.11) 

From equations (2.4) and (3.1), the U(p, q )  generators can indeed be expressed in 
terms of the Sp(2d, R) ones as follows: 

p..  11 = E.. V 

= Eji 

= D $  

= D, 

if i , j =  1,.  . . , p  

if i, j = p + 1, . . . , d 

i f i = l ,  . . . ,  p a n d j = p + l ,  . . . ,  d 

if i = p + l ,  . . . ,  d and j = 1 ,  ..., p. (3.12) 

The weight and lowering generators of U(p, q )  are the operators 

Pii = Eii = T ~ ~ & ~  +in i =  1,.  . . , d 
S 

(3.13) 

and 
P.. r J Y  = E-  = ~ ~ ~ s j ~  1 s j < i s p  

S 

= Eji = c Tjs t i s  

= Dij = t i s s j s  i = p + l , .  . . , d j =  1, .  . . , p  (3.14) 

p + l s i < j c d  
S 

S 
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respectively, whereas the weight and raising generators of U (  n )  are given by 

g s s  = E' V i s e i s  - 2" T i s t i s  + f( P - 9) s =  1 , .  . . , n (3.15) 
I I 

and 
g s r  = 1' vistjr - C" T i r t j s  l s s < t s n  (3.16) 

respectively. In equations (3.15) and (3.16), prime and double prime summations are 
defined by 

C'= f C"= 1 . (3.17) 

It remains to determine the branching rule for the irreps [ p ]  of U ( p n ,  q n )  under 
U (  pn, q n )  .1 U (  p ,  q )  x U (  n ) .  The U (  n )  irreps are characterised by their highest weight 
{ j , + ( p - q ) / 2 , j 2 + ( p - q ) / 2 ,  . . . , j , + ( p - q ) /  2 } ,  where j l , j2 , . .  . , j ,  are some integers 
satisfying the inequalities j ,  3 .  . . S i , .  From the definition (3.15) of the U ( n )  weight 
generators, we note that j ,  , . . . , j ,  may assume negative as well as non-negative values 
and hence correspond to mixed irreps of U ( n )  (Flores 1967, Flores and Moshinsky 
1967, King 1970, 1975). We shall henceforth denote the U ( n )  irreps by the shorthand 
notation 

[ j 1 j 2 .  . . j n l = { j l + ( ~ - q ) / 2 , j 2 + ( ~ - q ) / 2 , .  , i n + ( p - q ) / 2 ) .  (3.18) 
The U (  p ,  q )  irreps contained in a positive discrete series irrep [ p ]  of U (  pn, q n )  are 

also positive discrete series irreps characterised by their lowest weight { k, + 
n / 2  , . . . ,  k 2 + n / 2 ,  k , + n / 2 ;  k b + n / 2  ,..., k ; + n / 2 ,  k ; + n / 2 } ,  where { k l k  * . . .  kp} and 
{ k; k ;  . . . kb} are two partitions. We shall denote such irreps by the shorthand notation 

I i 

d 

i i = l  i i = p + l  

[ k i k z . .  . kp; k i k ; .  . . kb]  

= { k p  + n / 2 , .  . . , k2+ n / 2 ,  k ,  + n / 2 ;  kb + n / 2 , .  . . , k ; +  n / 2 ,  k :  + n / 2 } .  
(3.19) 

Let us now state the main result of the present paper: the U (  p ,  q) and U (  n )  groups 
are complementary within any irrep [ p ]  of U(pn, q n )  or, in other words, the irreps 
[ k ,  . . . kp; k :  . . . kb] x [ j ,  . . . j,] of U ( p ,  q )  x U ( n ) ,  contained in a given irrep [ p ]  of 
U (  pn, q n ) ,  are multiplicity free and there is a one-to-one correspondence between the 
labelsj, , . . . , j ,  of the U( n )  irreps and the labels k ,  , . . . , k,, k l ,  . . . , kb of the associated 
U (  p ,  q )  irreps. The precise relation between both sets of labels depends on the relative 
values of p ,  q and n and is given in table 1. In particular, the labels satisfy the condition 

1 k a - C  k k = C j s  = p  (3.20) 
a 5 S 

Table 1. U( p ,  9 )  x U( n) irreps contained in a given irrep [ p ]  of U( pn,  9n). 

n [ k , .  . . . kp;  ki . . . kb]  [ h . .  .in] U 

n 2 p + 9  
p s n < p + 9 

[ k ,  . . . kp;  ki . . . kb] 
[ k ,  . . . kn-q+,Op+q-n-o; 

[ k,  . . . kpO"-p-4- kb . . . - k i ]  
[ k ,  . . .  k,- ,+,-kb -,... - k : ]  

- 
0,1, . . . ,  p + 9 - n  

ki . . . kb-,O"] 
q s n < p  

n < 9  

[ k ,  . . . kn-q+,0p+4-n-u; 
ki . . . kb-,O"] 
[ k,  . . . kU0p-O; 
k ;  . . . k ~ - , 0 4 - " + w ]  

[ k ,  . . . k,- ,+,-  k&,.  . . - k ; ]  0, 1,. . . , 9  

0,1,. . . , n [ k ,  . . . k,- k k - , . .  . - k i ]  
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where the indices a and p run from 1 to p and from 1 to q respectively. Equation 
(3.20) results from the equality 

G1=Yll=G1 (3.21) 

where G1 and %l are the first order Casimir operators of U( p ,  q )  and U( n), defined by 

G, = 1 E ~ P ~ ~  Yll = Pss 
I S 

(3.22) 

respectively. 
The proof of the U( p ,  q)-U( n) complementarity is detailed in the next two sections. 

It consists in determining all the states I ) satisfying the following two conditions: (i) 
to be the lowest weight state of some U(p, q )  irrep [k, . . . kp; k: . . . kb] and (ii) to be 
the highest weight state of some U(n) irrep [j, . . .jn]. Such states are the simultaneous 
solutions of the following system of equations: 

( 3 . 2 3 ~ )  

DijI ) = C tistjsl ) = 0 i = l ,  . . . ,  p , j = p + l ,  . . . ,  d 
S 

(3 .23~)  

[ 9 s s - i ( P - q ) 1 1  )=(E'  Tist is-c"Tist is) l  )=jsl  ) 

Pstl ) = 1' Tistit -C" Tittis I ) = 0 (3.23e) 

It will be shown that this system has a solution if and only if the labels of the U(p, q )  
and U(n) irreps are related as shown in table 1 and that such a solution is unique. 

s =  1,.  . . , n (3.23d) 

1 s s < t s n. 
( i  I ) 

4. Proof of the complementarity relation when n 2 p + q 

In solving equation (3.23), we have to distinguish between the following four cases: 
n S p  + q, p s n < p +  q, q s n < p  and n < q. We shall start with the first one, which is 
the simplest, and leave the three remaining ones for the next section. 

Equations (3.23~1) and (3.236) are the conditions to be satisfied by the lowest weight 
state of a U( p )  x U( q )  irrep characterised by { k, . . . kp} x { k; . . . kb}. All their solutions 
can be written as (Moshinsky 1962) 

P 

( T d  -!3 + 1 ... d,n -6 + 1 ... n ) ks I ) =  n (Tp--n+l...p,l...ol ) km -k+, 
a = l  

>. 
T p s  'I)p-lp,ls Tl . . .p , l . . .p- l s  T d - l d , s n  T p +  l . . . d . s n - q + Z . . . n  

71 ... p,l . . .p  T d n  T d - l d , n - l n  Vp+l ... d,n -q+ I . . .n  
,..., 9 ,  , . . . ,  x z (  3 

TPl 77p-,p,12 

(4.1) 
In equation (4.1), &+, and kb+, are assumed to vanish, the operators ~ p - a + l . . . p , l . . . a - l s ,  

a = 1,. . . , p ,  s = a,. . . , n are defined by 

(4.2) Tp-a+l  . . .p ,  , . . . a - , s  = c (-l)wTp-u+l,w(l) . . T p - l , w ( a - 1 ) T p . 7 1 ( s )  
71 
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where the summation is carried out over the (Y ! permutations of the indices 1, . . . , (Y - 1, 
s; the operators Td- ,+ ] . . . d , sn -B+2 . . .n ,  p = 1 , .  . . , q, s = 1 , .  . . , n - p  + 1 are defined by a 
similar relation, and Z is an arbitrary polynomial in the indicated variables, subject 
to the condition that, when multiplied by the other factors in (4.1), it should still be 
a polynomial in T ~ ~ .  

Next let us solve equation (3.23e). Here, it is convenient to replace in Z the p q  
ratios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  a = 1, . . . , P, P = 1, . . . , 4 by 

xu, 1 ( Tp-a + 1 ,,.p,l ... a T d  - p +  1 ... d,n - p  + l . . . n )  a = 1 , .  . . p  p = 1,. . . , q (4.3) 

where the operators xu,, defined by 

xu, = Tp-a + 1 ...p, 1 ... a - 1s  v d  - p +  l...d,sn - p  +2...n a = 1,. . . , p p = 1,. . . , q (4.4) 
S 

satisfy the relations 

[ P s , ,  xu,] = 0 l s s < t s n .  (4.5) 

After such a substitution, Z becomes a new polynomial Z ’  in the ratios (4.3) and the 
following ratios: 

a = 1,. . . , p s = a + 1,. . . , n - q  T p  - a + 1 ...p. 1 ... U - 1 S I  T p  - a + 1 ...p. 1 ... U 
(4.6) 

T d - @ + l  ... d,sn-j3+2 ... n /  T d - p + 1  ... d , n - p + l  ... n 

It is then straightforward to show that equation (3.23e) imposes that 2’ only depends 
on the ratios (4.3). By expanding 2‘ into a power series, we obtain the following 
expression for the simultaneous solutions of equatiom (3.23a), (3.23 b )  and (3.23e): 

p = 1,. . . , q s = 1, . . . , n - p. 

Here C{*,@) is an, as yet, undetermined constant and the summation indices A,,, 
a = 1 , .  . . , p ,  p = 1 , .  . , q are restricted by the condition that the right-hand side of 
equation (4.7) should be a polynomial in vis. 

Equation (3.23d) now yields the following conditions: 

C ~~p = ks -is s = 1 , .  . . , p 

s = n - q + l ,  . . . , n 
P 

Aa,n-s+l  = K, -5+ l+ j s  
a 

(4.8) 

and 

j ,  = 0 s = p + 1, . . . , n - q. (4.9) 

From equation (3.20), equation (4.8) contains only p + q - 1 independent relations, 
which would enable us to express p + q - 1 indices A,, in terms of the remaining ones. 
We shall, however, not need to find a detailed solution of equation (4.8), since we 
shall show hereafter that all the A,, indices must actually vanish. For the time being, 
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it is enough to introduce equation (4.8) into equation (4.7), which now reads 

)L - km + I 

(4.10) 

To solve the last equation (3.23c), it is convenient to extend the concept of traceless 
boson operators introduced by Lohe and Hurst (1971) to construct bases for O(n) and 
USp( n) irreps. In the present context, traceless boson operators are introduced in the 
following way. Let P( 7)11, . . . , 7 d n ) I O )  be any boson state satisfying the conditions 

c 6 i 5 ' $ j S P ( 7 1 1 , .  * 9 T d n ) I o ) = O  i = l , . .  . , p  j = p + l , .  . . , d. (4.11) 

Let us look for some modified boson operators aTS and aiS, i = 1 , .  . . , d, s = 1 , .  . . , n 
such that the transformed states under the action of ujs or ai, still fulfil the same 
conditions, i.e. 

S 

(c 6 i ~ 8 j s ) ~ ~ t ~ ( ~ I l  9 . * * 3 7]dn) I0 )  

=(E 6 i ~ 8 j ~ ) ~ k t ~ ( ~ l l ,  * * 9 7 d n ) l O ) ' O  

i = l ,  . . . ,  p , j = p + l ,  . . . ,  d , k = l ,  . . . ,  d , t = l ,  . . . ,  n. (4.12) 

For the annihilation operators ail, we may take the standard boson annihilation 
operators: 

a. IS = 6. IS i =  1 , .  . , d s = 1 , .  . . , n. (4.13) 

On the contrary, the creation operators differ from 7is and may be written as 

where A is a p q  x p q  operator matrix, whose elements are defined by 

A i j , k l  = S i k E l j  + S j I E k i  (4.15) 

and A-' is its inverse. Various properties of the operators a:S and a, are listed in 
appendix 1. In particular, it is proved there that if we replace qS by a:s in equation 
(4.10), the resulting states are still solutions of equations (3.23a), (3.23b), (3.23d) and 
(3.23e), and in addition satisfy equation (3 .23~) .  

It now only remains to explicitly replace vis by a:s in equation (4.10) and to 
re-express the result in terms of rli,. From equations (4.4) and (A1.3), it results that 
such a substitution makes xaB vanish identically. In equation (4.10), the summation 
indices A,, must therefore be restricted to zero values: 

(4.16) 

i, k = 1, . . . , p j, 1 = p + 1, . . . , d 

A,,=O a = 1 , .  . . , p  p = 1, . . . , 9. 
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By introducing equation (4.16) into equation (4.8), we obtain the following relations: 

is = ks s = 1, .  . . , p 

s = n - q + l , .  . . , n - - - k L - s + 1  

(4.17) 

which, together with equation (4.9), completely determine the U (  n) irrep labels in 
terms of the U(p,  q )  irrep ones in accordance with the first row of table 1. Equation 
(4.10) now becomes 

or 

(4.18) 

(4.19) 

where C is some normalisation constant. In deriving equation (4.19) from equation 
(4.18), we have taken into account that all the terms arising from the second term on 
the right-hand side of equation (4.14) do vanish. 

In conclusion, we have shown that when equations (4.9) and (4.17) hold, the system 
(3.23) has a unique solution given by equation (4.19). 

5. Proof of the complementarity relation when n C p + Q 
In the three cases corresponding to n < p + q, we can essentially proceed along the 
same lines as in the previous section. However, an additional difficulty appears when 
trying to write the counterpart of equation (4.18) in terms of standard boson operators: 
the second term on the right-hand side of equation (4.14), which did not have any 
effect when n 3 p + q, now cannot be ignored any more. Fortunately, it is possible to 
avoid calculating its contribution by resorting to a trick, that we shall now proceed to 
explain. 

Let us consider for instance the case where p =z n < p + q. The simultaneous solutions 
of equations (3.23a), (3.23b), (3.23d) and (3.23e) can be written as 

I ) = (F ( T p - a + l  . . .p,  l...a ) j .  

n = l  

.( fi ( T d - p + l  ... d , n - p + l  ... n ) k6 - k 6 + 1 - ? A p  ) 2 ('a@ )'@I lo>* (5.1) 
= n-p+l  

In equation (5.1), the indices of the operators x , ~  vary in the range Q = 1, .  . . , p ,  
/3 = 1, . . . , min (q ,  n - a) and, as a consequence of equation (3.23d), their exponents 
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A,, satisfy the following relations: 

s = p + 1 ,  . . . , n. 

As previously, equation (3 .23~)  is solved by replacing T~~ by aIs in equation (5.1). 
This makes xas vanish identically and hence we must restrict the summation indices 
A,, to zero values. From equation (5.2), it results that 

j s  = 5 s = l , .  . . , n - q  

s =  n - q + l , .  . . , p  

s = p + 1 ,  . . . , n. 
= k, - kL-s+l 
- I  - -kn-s+I 

Equation (5.1) is then transformed into equation (4.18). 
From equation (3.23c), it results that 

2 1’ 1” Dt,D,( ) = 0. 
i j  

(5.3) 

(5.4) 

In appendix 2, it is shown that the operator on the left-hand side of this relation can 
be expressed in terms of the second order Casimir operator of U ( n )  and of the first 
and second order Casimir operators of U( p )  and U(q). Since the eigenvalues of such 
operators are well known, equation (5.4) can be rewritten as follows: 
P 9 

a = l  p=1  
ka(ka + n + p  - q - 2 a  + 1 )  + C kb(kb+  n - p +  q -2p  + 1 )  

fl 

- C j s ( j s  + n + p  - q -2s+ 1 )  = 0. 
s = 1  

By introducing equation.(5.3) into equation (5.5), we obtain for the latter 
P 

s = n - q + l  
2 C kskLWs+, = 0. 

(5.5) 

(5.6) 

Since both k, and kL-s+l are non-negative integers, equation (5.6) implies that, for 
any s in the range s = n - q+ 1 , .  . . , p, either k, or k’,-s+l must vanish. There are 
p + q - n + 1 ways of satisfying such conditions, according to the number a of vanishing 
ki-s+l .  For any given a = 0, 1 ,  . . . , p + q - n, the following relations hold: 

k, = O  a = n - q + a + l , .  . . , p  

kb=O P = q - a + l , .  * .  , q. 

Equation (5.3) now becomes 

j s  = ks s = l , .  . . , n - q + a  

s = n - q + a + l , .  . . , n - I  - -kn-s+l, 

(5.7) 

showing that (+ also determines the relative number of positive and negative labels in 
[ j ,  . . .in]. We conclude that the U ( n )  irrep labels are determined in terms of the 
U (  p, q )  irrep labels in accordance with the second row of table 1. Finally, when taking 
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equation (5.7) into account, the substitution of the right-hand side of equation (4.14) 
for a:, in equation (4.18) is straightforward. It leads to equation (4.19), where the 
appropriate values of k, and kb have to be set equal to zero in accordance with 
equation (5.7). 

In the two remaining cases q s n < p and n < q, a similar treatment leads to the 
last two rows of table 1. In each case, the unique solution of equation (3.23) is given 
by equation (4.19). This completes the proof of the U(p, 4)-U(n) complementarity. 
In the next section, the latter will be illustrated by some examples in atomic physics. 

6. Some applications to atomic physics 

In recent publications, Kibler and NCgadi (1983a, b, 1984) reformulated the known 
connection between the (three-dimensional) hydrogen atom and a four-dimensional 
harmonic oscillator with constraint in a way that sheds some light on the hydrogen 
atom S0(4,2)  dynamical group. The latter was originally described by Barut and 
Kleinert (1967) as arising from an extension of SO(4, l ) .  In contrast, Kibler and 
NCgadi obtained it from a constraint on the Sp(8, R )  dynamical group of the four- 
dimensional harmonic oscillator. 

Let us show that the analysis of the previous sections provides us with a mathematical 
formulation of the Kibler-NCgadi approach. By setting p = q = 2 and n = 1 in equation 
(3.9), we indeed obtain the group chain 

(6.1) 
where U(2,2), SU(2,2) and U( l )  are generated by the operators Pil,jl = Pij, i, j = 
1, . . . ,4 ,  Pv -fg,G, , i, j = 1, . . . ,4 ,  and G, respectively. The above assertion results 
from the two following properties. First, the Lie algebras of SU(2,2) and S0(4 ,2)  are 
isomorphic. The correspondence between both sets of generators is given in table 2. 
The S0(4,2)  generators are denoted there by LAB = - L E A  = (LAB)+, A, B = 1, . . . , 6 ,  
and they satisfy the following commutation relations: 

(6.2) 

Sp(8, R)  = U(2,2) = SU(2,2) x U(1) 

[LAB, &Dl = j(gACLBD + gADLCB + gBCLDA + gBDLAC 

Table 2. Isomorphism between the S0(4,2) and SU(2,2) Lie algebras. 

L+ = L, + iL2 = L2, + iL3, 
L- = L, - iL2 = L2, - iL31 
L3 = L12 
A+ = A, + iA, = L4, + iL42 
A- = A ,  - iA2 = L4, - iL42 

N+ = NI + iN2 = L,, + iL,, 
N- = NI - iN2 = L,, - iL,, 

A3 = L43 

N3 = L3, 
N4 = L4, 

- 

K, = K, + iK2 = L I 6 +  iL2, 
K- = K, - iK2 = L,, - iL26 
K3 = L36 
K4 = L, 
N = L,, 

- 
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with the metric tensor g,B = diag (1, 1, 1, 1, -1, -1). An alternative notation (Wolf 
1967, Moshinsky and Seligman 1981), also used in table 2, is La, A,, N,, K,, N4, K4, 
N, a = 1, 2, 3, where La and A, are the components of the angular momentum and 
the Runge-Lenz vector respectively. Second, the U( l )  generator, which is the U(2,2) 
first order Casimir operator, is 

GI = 7)11'$11 + 7721521 - 7 3 1 5 3 1  - 7741541 * (6.3) 

Comparison with the Kibler-NCgadi constraint shows that the latter coincides with 
the relation 

GI = 0. (6.4) 

In addition, the results of the previous sections enable us to outline some possible 
extensions of the Kibler-NCgadi approach to many-electron atoms. Let us consider 
n-electron states wherein all the electrons occupy the same shell of the common 
Coulomb potential. If we set p = q = 2 in equation (3.9), we obtain the following group 
chain: 

(6.5) Sp(8n, R )  3 U(2n, 2n) 3 SU(2,2) x U(n) 

where the SU(2,2) generators are again related to those of S0(4 ,2)  as shown in table 
2. From equation (3.1), it results that SU(2,2) also belongs to the alternative chain 

n 

Sp(8n, R )  =I U(2n, 2n) 2 O(SU(2,2)),  2 SU(2,2) (6.6) 
s = l  

where the intermediate groups (SU(2, 2))s, s = 1, .  . , n, are generated by the traceless 
parts of the operators i, j = 1, .  . . ,4 ,  corresponding to a given s value. Each 
(SU(2,2)), group is locally isomorphic to an (S0(4,2)),  one, whose generators are 
denoted by L$i,  or L',"', A',"', N?', K"' a ,  NY',  K F ) ,  N'", a = 1, 2, 3, and are given 
in terms of by relations similar to those of table 2. Hence the chain (6.6) is 
equivalent to the chain 

n c O(SO(4,2)),  = S0(4,2).  
S = l  

(6.7) 

In equation (6.7), the S0(4 ,2)  subgroup generators are given by 

LAB = 1 L$i ( 6 . 8 ~ )  
v 

or 

(6.86) 

The SU(2,2) group appearing in equation (6.5)-or the locally isomorphic S0(4 ,2)  
one-is a dynamical group for the n-electron system. The advantage of chain (6.5) 
over chain (6.6) or (6.7) is the appearance of the complementary U(n)  group, which 
plays the same role as the Kibler-NCgadi constraint for the hydrogen atom. 

From equation (6.8), it is obvious that the S0(4 ,2)  dynamical group for many- 
electron atoms we are considering here corresponds to an independent-electron picture. 
Since the underlying SO(4) symmetry is known to be badly broken by the Coulomb 
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interaction between the electrons (Butler and Wybourne 1970, Chac6n et a1 1971), the 
usefulness for practical purposes of such a dynamical group and, ultimately, that of 
chain (6.5), may be questioned. For two-electron atoms, however, there is an alternative 
way of defining the SO(4) symmetry-and the associated S0(4 ,2)  dynamical group- 
that incorporates the effects of the Coulomb repulsion between the electrons and 
enables to predict the mixing coefficients of intrashell doubly excited states with good 
accuracy (Wulfman and Kumei 1973, Wulfman 1973, Sinanoglu and Herrick 1975). 
We shall now show that for such a correlated electron S0(4,2)  dynamical group, a 
chain similar to equation (6.5), where n is set equal to 2, does also exist. 

According to Wulfman and Kumei (1973), the correlated electron S0(4,2)  group, 
that we shall henceforth denote by (SO(4, 2))c,  is the subgroup in the chain 

(S0(4,2)) iO(SO(4,2))23 (SO(4,2)c (6.9) 

generated by the operators 

Lh"' = Lh') + L',2' 

"" = "+ N ( 2 )  

A?) = A t )  - A(2) "," = Nh" - j p  
a a 

K t )  = K t )  - K h 2 )  N y )  = Ny) + N$2) Ky)  = KY) + K ( 2 )  (6.10) 

To equation (6.9), we can associate the following chain 

Sp(16, R )  2 U(4,4) 3 (SU(2,2)),O(SU(2,2))2 3 (SU(2,2))c (6.11) 

where (SU(2,2)), is locally isomorphic to (S0(4,2)) ,  and is generated by the traceless 
parts of the operators i, j = 1, . . . ,4 ,  whose definition in terms of P i ,  j , ,  i ,j  = 1, . . . , 4 ,  
s = 1,  2, is given in table 3. In deriving the latter, we choose the first order Casimir 
operator of (U(2,2)),  according to the following prescription: 

(6.12) G'," = G\1) - G ( 2 )  1 

where 

(6.13) 

are the first order Casimir operators of (U(2, 2))s,  s = 1,2. 
An analysis of table 3 shows that the operators Pf) can be obtained from the 

operators Pij of equation (3.1) by the substitution of ( 7 3 2 ,  [32), ( 7 4 2 ,  542),  ( -712,  -tI2), 

Table 3. The (U(2, t ) ) ,  generators in terms of the (U(2,2)),@(U(2, 2))2 generators. 

p l l , l  1 +p32,32 

p21.21 fP42,42  

p31,31+p12.12 

p41.41 +p22,22 

IPl 1.21 + p42.32 

p11,31 -p12,32 

p11.41 -p22,32 

p21,31 -lP12,42 

p21,41 -p22,42 

p31,41 +p22.12 
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( - 7 2 2 ,  -622)  for ( 7 1 2 ,  '$22), ( 7 2 2 ,  '$22), ( 7 3 2 ,  '$321, ( 7 4 2 ,  '$42), It is Obvious 

that such a replacement does not change the commutation relations or the Hermiticity 
properties. Hence, if we perform the same substitution in the U(2) generators B,, of 
equation (3.2), we obtain new operators B$), given by 

(6.14) 

and still generating a U(2) group, that we shall denote by (U(2)),. However, the latter 
is not a subgroup of U(4,4), but of the group (U(4,4)), resulting from the same 
substitution. The correlated electron SU(2,2) group therefore belongs to a chain similar 
to chain (6.5), where n is set equal to 2, namely 

Sp(16, R )  = (U(4,4)),= (SU(2,2)),x (U(2)),. (6.15) 

In conclusion, we have shown that the mathematical framework underlying the 
Kibler-NCgadi approach of the hydrogen atom dynamical group can be extended to 
the independent-electron dynamical group of intrashell many-electron states, as well 
as to the correlated electron dynamical group of intrashell doubly excited states. In 
such generalisations, there appears either a U(n)  or a (U(2)), group, which is the 
counterpart of the Kibler-Nigadi constraint. At this point, it is worth remembering 
that a complementarity relation, similar to that between U(2,2) and U( n), or (U(2,2)), 
and (U(2)),, makes its appearance in the theory of nuclear collective states and plays 
an important role there (Rosensteel and Rowe 1980, Vanagas 1981, Vasilevskii er al 
1980). In such a theory the complementary groups are the dynamical group Sp(6, R )  
of the three-dimensional harmonic oscillator and an O( n )  group, where n = A - 1 and 
A is the nucleon number (Chac6n 1969, Moshinsky and Quesne 1971, Deenen and 
Quesne 1982a, b, 1984). Whether the complementarity relations between U(2,2) and 
U( n) ,  and between (U(2,2)), and (U(2)),, have similar important consequences in 
atomic physics remains to be investigated. 
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Appendix 1. Properties of the traceless boson operators 

The purpose of the present appendix is to list various properties of the traceless boson 
operators a:, and ais,  i = 1, . . . , d, s = 1,. . . , n, defined by conditions (4.11) and (4.12), 
and whose explicit expressions are given in equations (4.13)-(4.15). 

In the space of states satisfying equation (4.11), the operators a:s and a, are 
Hermitian conjugates of one another and satisfy the following commutation relations: 

(Al . l )  [ais, ajrI = [ a l ,  .XI = O  
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[a,,, ax] = S,6,, -E” akA&$lr if i , j = l ,  . . . . . ,  p 
kl 

if i = 1, . . . , p j = p + 1 ,  . . . ,  d 

- - -1’ E” aLAi;Jlalr if i = p + 1,  . . . , d j =  1 , .  . . , p  
k I  

= &,&r -C‘ aLAiltp,r if i , j = p + l ,  . . . ,  d. (A1.2) 
kl 

Moreover, they fulfil the traceless conditions 

E a l S a J S - o  t + -  i = l , . .  . , p  j = p + l ,  . . . ,  d. (A1.3) 

The proofs of equations (Al.1)-(Al.3) are quite similar to those given by Lohe and 
Hurst (1971) for O ( n )  or USp(n) traceless boson operators and will therefore be 
omitted. Equations (A1.2) show that the operators ai,, a,, are not true boson operators, 
but modified ones, while equation (A1.3) accounts for their name of traceless boson 
operators. 

Next let us prove that when T,, is replaced by a:, in any simultaneous solution of 
equations (3.23a), (3.23b), (3.23d) and (3.23e), the resulting state remains a solution 
of these equations and, in addition, satisfies equation ( 3 . 2 3 ~ ) .  The latter point directly 
results from the defining property (4.12) of the traceless boson operators and the fact 
that the vacuum state 10) satisfies equation (4.11). The proof of the former point goes 
in two steps. First, we note that in the space of states satisfying equation (4.11), the 
U(p) x U ( q )  and U(n) generators have similar expressions in terms of the traceless 
and the standard boson operators: 

5 

C aZajs = E qissjs 

C’ a Lait - E“ a Z ai, = E’ Tistir - E’’ Tirtis 

i , j = l ,  ..., p or i , j = p + l ,  . . . ,  d (A1.4) 

(A1.5) 

S S 

s , t = l ,  ..., n. 
I I I I 

Equations (A1.4) and (A1.5) are easily demonstrated by using equations (4.11), (4.13) 
and (4.14). Second, in the same space, both the traceless and the standard boson 
operators behave in the same way under U( p )  x U(q) and U( n). By applying equations 
(Al.l)-(A1.3), the following relations: 

k =  1 , .  . . , d t =1,. . . , n (Al.6) 

= a  Ill a? J S  if j = 1, . . . , p s , t , u = l ,  . . . )  n 

= - Ss,,aJt if j = p + 1, . . . , d s , t , u = l ,  . . . ,  n (A1.7) 

are indeed easily proved. This completes the demonstration of the above assertion. 
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Appendix 2. Second order Casimir operators of U(p, q )  and U(n) 

In the present appendix, we shall show that the second order Casimir operators of 
U(p, q )  and U(n)  are linearly related and consequently that equations (5.4) and ( 5 . 5 )  
are equivalent. 

The second order Casimir operators of U( p, q )  and U( n) are defined by 

G2 = E,E~P&, (‘42.1) 
iJ 

and 

respectively. By using equations (3.3) and (3.12), G2 can be rewritten as 

G2= -2c’c”Dt,D,+Cp.:P’+Cp,:4)-qCp(lP)--pCp‘(14) W . 3 )  
i j  

where 

are, respectively, the first order and the second order Casimir operators of U( p) and 
U(q). In the same way, by applying equations (2.2), (2.4) and (3.2), 92 can be put 
into the following form: 

92=C c ‘ ~ i s , i t ~ j t , j s  - 2 C ’ C ” ~ i s , i t ~ j s , ~ “ C ‘ ‘ ~ i s , i t ~ j j f , j s  . (A2.6) 

Let us now introduce equations (2.1) and (3.11) into equations (A2.3) and (A2.6). By 
reordering the boson creation and annihilation operators, one easily obtains the 
following linear relation between G2 and g2: 

(A2.7) 

(A2.8) 

Since the solutions 1 ) of equations (3.23) transform according to the irreps (3.18) of 
U(n), {kl+n/2 , .  . . , k,+n/2} of U(p), and {k:+n/2, .  . . , kL+n/2} of U(q), the 
corresponding eigenvalues of the U(n), U(p) and U(q) Casimir operators are easily 
obtained. For U(p), for instance, they are given by (Louck 1970) 

S I  ( ij i j  ij ) 

G - 3  -1 
2 2-44p+  q)(n - p  - 4 ) .  

2 c ’ c ’ ’ 4 D U  = c p I P ’ + c p ~ ) - q c p r P ) - p @ . ( ¶ ) -  1 yj 2 -1 4n(p + s ) ( n  -P - 9 ) .  

From equations (A2.3) and (A2.7), the operator 2 Z: Zy DLD, can be expressed as 

i j  

CpPbp’I ) = (k, + n/2)(ka + n / 2 + p  - 2 a  + 1)1 ). 
n = l  

By using equations (A2.8), (A2.9) and similar relations for U(n)  and U(q), it is 
straightforward to transform equation (5.4) into equation (5 .5 ) .  
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